

A CONNECTED-VEHICLE TRAFFIC SIGNAL SYSTEM
MODELING PLATFORM

FINAL PROJECT REPORT

by

Robert B. Heckendorn, Neeta A Eapen, and Ahmed Abdel-Rahim
University of Idaho

Sponsorship

PacTrans and the University of Idaho

for
Pacific Northwest Transportation Consortium (PacTrans)

USDOT University Transportation Center for Federal Region 10
University of Washington

More Hall 112, Box 352700
Seattle, WA 98195-2700

In cooperation with US Department of Transportation-Research and Innovative Technology

Administration (RITA)

ii

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and the accuracy of the information presented herein. This document is disseminated under

the sponsorship of the U.S. Department of Transportation’s University Transportation Centers

Program, in the interest of information exchange. The Pacific Northwest Transportation

Consortium, the U.S. Government and matching sponsor assume no liability for the contents or

use thereof.

iii

Technical Report Documentation Page
1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
 01723933

4. Title and Subtitle 5. Report Date
A CONNECTED-VEHICLE TRAFFIC SIGNAL SYSTEM MODELING
PLATFORM

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Robert B. Heckendorn, 0000-0001-9756-554X;
Neeta A Eapen, and Ahmed Abdel-Rahim, 0000-0001-9756-554X

2019-S-UI-3

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
PacTrans
Pacific Northwest Transportation Consortium
University Transportation Center for Region 10
University of Washington More Hall 112 Seattle, WA 98195-2700

11. Contract or Grant No.

69A3551747110

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
United States of America
Department of Transportation
Research and Innovative Technology Administration

14. Sponsoring Agency Code

15. Supplementary Notes
Report uploaded at www.pacTrans.org
16. Abstract
Traffic in the cities of the future will be managed by sophisticated signaling systems working in conjunction with network-
connected vehicles that share a wide variety of data. A common configuration for information flow will be from vehicles
on the road to roadside units (RSUs) via basic safety messages (BSM). A BSM contains information about position,
heading, state of the vehicle, etc. The roadside infrastructure (RSI) may in return convey information about traffic
conditions ahead such as the status of signaling. Traffic control algorithms can then plan and improve traffic control by
managing signals via protocols such as signal phasing and timing (SPaT) messages. Traffic simulators are critical tools to
aid traffic planners in modeling traffic signal operations and traffic flow. VISSIM is a popular example of this class of
tools. Unfortunately, VISSIM does not support BSM and SPaT protocols, thus limiting the development of simulations of
the more closely connected and managed traffic environments of the future. This software project enables modeling of
traffic systems of the future by suppling a well-documented and technically precise implementation of BSM and SPaT
programming interfaces for VISSIM.

17. Key Words 18. Distribution Statement
Traffic simulation, connected vehicles, BSM, SPaT, VISSIM No restrictions.
19. Security Classification (of this
report)

20. Security Classification (of this
page)

21. No. of Pages 22. Price

Unclassified. Unclassified. NA

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

http://orcid.org/0000-0001-9756-554X
http://www.pactrans.org/

iv

v

Table of Contents

List of Abbreviations ... viii

Executive Summary ... ix

CHAPTER 1 INTRODUCTION.. 1

CHAPTER 2 MODEL DEVELOPMENT .. 3

2.1 Statement of Purpose ..3

2.2 Model Overview ...4

2.3 Preliminaries ...5

2.4 Object Creation for Using CoVeTTware ..5

2.5 Function for Safe Closing ...6

2.5.1 Public void runVissimOnce() ...6

2.5.2 Public int numberOfRunsFromSecs(double t) ...6

2.6 Basic Safety Message (BSM) ...7

2.6.1 BSM Fields ...7

2.6.2 Functions for BSM ...8

CHAPTER 3 MODEL IMPLEMENTATION AND TESTING .. 13

3.1 Model Implementation Examples ...13

3.1.1 Display a BSM Message...13

3.1.2 Report Movement in the Network ..13

3.1.3 Report Movement of an Intersection in the Network, When Intersection
Number Is Given ...14

3.1.4 Report Movement of an Intersection in the Network, When Intersection
Name Is Given ..15

3.1.5 Report Movement of the Signal Head of an Intersection in the Network,
When the Signal Head Number Is Given ..16

3.1.6 Report Movement of the Signal Head of an Intersection in the Network,
When the Signal Head Name Is Given ...16

3.2 Signal Phasing and Timing Message (SPaT) ..17

3.2.1 SPaT Fields ...17

3.3 Functions for SPaT..19

3.3.1 Public spatSignalGroupData createSPATSignalGroupData(int signalGroupId,
String phaseState, float minEnd- Time) ..19

vi

3.3.2 Public SPAT createSPAT(int intersectionNumber, String intersecStatus,
List<spatSignalGroupData> sgData) ..19

3.3.3 Public SPAT createSPAT(String signalControllerName, String intersecStatus,
List<spatSignalGroupData> sg- Data) ..20

3.3.4 Public void setSPAT(SPAT s) ..20

3.3.5 Public void displaySPAT(SPAT s)...20

3.3.6 Public void writeSPAT(SPAT s) ..21

3.4 SPaT Implementation Example ..21

3.4.1 Control Signals of an Intersection in the Network, When Intersection
Number Is Given ...21

3.4.2 Control Signals of an Intersection in the Network, When Intersection
Name Is Given ..22

3.5 Testing of a Connected Vehicle Traffic Control Algorithm23

3.5.1 An Example of a Fixed-Time Signal Generation Algorithm24

CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS .. 27

CHAPTER 5 REFERENCES ... 29

vii

List of Figures

Figure 2-1 Data Exchange among CoVeTTware, VISSIM, and the Traffic Control Algorithm .. 4

Figure 2-2 Register COM Server Command in VISSIM ... 5

List of Tables

Table 2-1 BSM Fields .. 8

Table 3-1 SPaT Fields .. 19

Table 3-2 SPaT Signal Group Data fields .. 19

viii

List of Abbreviations

API Application programming interface

BSM Basic safety message

COM Component object model

CoVeTTware Connected Vehicle Traffic control algorithm Testing Software

IEEE Institute of Electrical and Electronics Engineers

RSI Roadside infrastructure

RSU Roadside unit

SAE Society of Automotive Engineers

SPaT Signal phasing and timing

ix

Executive Summary

VISSIM is a popular micro-simulation package for traffic analysis. By micro-simulation

we mean that it simulates the behavior of individual cars in motion in traffic and breaks up time

into small steps. Unfortunately, VISSIM lacks an application programming interface (API) for

connected vehicles and roadside infrastructure development. In response, this was a technology

enabling project rather than a research project. Software was designed and implemented to

augment enable the VISSIM simulator to model a connected-vehicle environment. This included

interfaces that allow the design and creation or roadside infrastructure (RSI) software that

accesses realistic and precise basic safety messages (BSM) from VISSIM and the controlling of

signals in VISSIM via signal phasing and timing (SPaT) commands, as if it were connected to

real traffic hardware and controlling real traffic.

This project aimed to design and develop Connected Vehicle Traffic control algorithm

Testing Software (CoVeTTware). The traffic simulation in this work was done by using the

VISSIM simulation tool. The component object model (COM) interface was used to access the

objects of the VISSIM simulation tool. The exchange of information between VISSIM and

CoVeTTware was performed in real time. CoVeTTware retrieves information about vehicles at

intersections from VISSIM and generates the BSMs of the vehicles in real time, according to the

Society of Automotive Engineers (SAE) J2735 standard. The BSMs can be used by a connected

vehicle traffic control algorithm to generate signal information for an intersection. The signal

information includes the signal phase to be set for a signal and the period for which the signal

phase should be set. The signal information is used by CoVeTTware to generate SPaT messages,

according to the SAE J2735 standard. Using CoVeTTware, the statuses of the signals of the

x

intersection are changed in VISSIM in real time by on the basis of the SPaT messages. When the

period of the given signal phase expires, CoVeTTware resets the signal phase as UNDEFINED.

This model can be used to test any connected vehicle traffic control algorithm. The

software has been tested, and a manual is supplied.

1

CHAPTER 1 INTRODUCTION

Traffic in the cities of the future will be managed by sophisticated signaling systems

working in conjunction with networks of connected vehicles that share a wide variety of data. A

common configuration for information flow is from vehicles on the road to roadside units

(RSUs) via basic safety messages (BSM), (American Society for Testing and Materials (ASTM)

2010). A BSM contains information about the position, heading, and state of the vehicle. The

roadside infrastructure (RSI) may in return convey information about traffic conditions ahead

such as the status of signaling. These systems may allow drivers to better plan by having richer

knowledge of the traffic conditions and transportation infrastructure in which they are embedded.

The roadside infrastructure can similarly help improve traffic flow and safety.

Traffic planners often use simulations to predict traffic behavior. A micro-simulation uses

traffic objects such as cars, buses, and pedestrians and moves them through a simulated world a

small distance at a time. This enables careful simulation of interactions between traffic objects.

VISSIM is a popular micro-simulation package and was the focus of our work.

This project was a technology and research enabling project more than strictly a research

project. We carefully created an application programming interface (API) for VISSIM based on

standards that conform BSM messages from cars arriving at intersections, as if RSUs were in

place to monitor traffic (Heckendorn and Eapen 2021). The design is extensible to any placement

of RSUs. An API was also created to accept the same standardized signal phase and timing

(SPaT) messages that real RSI would accept for signal control. With these APIs based on real

standards for these message protocols, software engineers can construct systems that simulate

traffic monitoring, signal control, and decision platforms such as traffic control and optimization.

Because the APIs simulate real messages, the input and output from the traffic control software

2

can easily be switched from connections to the simulator to connections to real standards-

compliant hardware. This will allow developers to field test algorithms run against the simulator.

3

CHAPTER 2 MODEL DEVELOPMENT

2.1 Statement of Purpose

This project aimed to design and develop Connected Vehicle Traffic control algorithm

Testing Software (CoVeTTware). The traffic simulation in this work was done by using the

VISSIM simulation tool. The component object model (COM) interface was used to access the

objects of the VISSIM simulation tool. The exchange of information between VISSIM and

CoVeTTware was performed in real time. CoVeTTware retrieves information about vehicles at

intersections from VISSIM and generates BSMs of the vehicles in real time, according to the

SAE J2735 standard (Society of Automotive Engineers (SAE) (2016), Michaels et al. (2010),

and Institute of Electrical and Electronics Engineers (IEEE) (2013)). The BSMs can be used by a

connected vehicle traffic control algorithm to generate signal information for an intersection. The

signal information includes the signal phase to be set for a signal and the period for which the

signal phase should be set. The signal information is used by CoVeTTware to generate SPaT

messages (SAE 2016), according to the SAE J2735 standard. Using CoVeTTware, the statuses of

the signals of the intersection in VISSIM are changed in real time based on the SPaT messages,.

When the period of the given phase of the signal expires, CoVeTTware resets the signal phase as

UNDEFINED.

This model can be used to test any connected vehicle traffic control algorithm. Figure 2-1

shows the exchange of data among CoVeTTware, VISSIM, and the traffic control algorithm.

4

Figure 2-1 Data Exchange among CoVeTTware, VISSIM, and the Traffic Control Algorithm

2.2 Model Overview

This document explains how basic safety messages (BSMs) from vehicles can be

retrieved from VISSIM using CoVeTTware. It also explains how CoVeTTware can use signal

information to control the signal status of intersections in VISSIM. We assume that a signal

controller exists for each intersection in the VISSIM input file. The intersection ID/number and

the intersection name correspond to the signal controller number and the signal controller name,

respectively. Section 2.3 explains the preliminary steps to be done. Section 2.4 documents object

creation for using CoVeTTware. Section 2.5 explains the function to be invoked at the end of all

operations using CoVeTTware and the functions that help in the simulation of the network.

5

Section 2.6 explains the BSM fields and the functions used to generate, display, and write BSM

messages for the vehicles in the VISSIM network.

2.3 Preliminaries

In order to access VISSIM from Java code, the Java COM bridge (Jacob) is needed

(JACOB (2021)). The following steps need to be done:

1. Register the COM server in VISSIM. See Figure 2-2.

2. Add jacob*.dll to c:\windows\system32.

3. Add jacob.jar to the library of your project.

Figure 2-2 Register COM Server Command in VISSIM

To use CoVeTTware, add covettwareProject.jar to the library of your project.

2.4 Object Creation for Using CoVeTTware

To use CoVeTTware, create an object of covettware. The VISSIM input gets loaded in

this process. The files for writing BSM and SPaT messages are also created here. If a file is

already present, it will be overwritten.

public covettware(String VissimFilePath, String bsmFilePath, String spatFilePath)

Parameters: String VissimFilePath - The path to VISSIM input file (*.inpx).

String bsmFilePath - The path to the file where BSM messages are to be written (*.txt).

6

String spatFilePath - The path to the file where SPaT messages are to be written (*.txt).

The syntax for object creation of covettware is as follows:

covettware obj = new covettware(VissimFilePath, bsmFilePath, spatFilePath);

2.5 Function for Safe Closing

The function finalStep() should be used at the end of the program. It terminates VISSIM

and the files (for writing the BSM and SPaT messages) safely.

 public void finalStep() Parameters : No parameters Return type : void

The syntax for finalStep() is as follows:

obj.finalStep();

Other functions help in the simulation of the network.

2.5.1 Public void runVissimOnce()

This function is used to run the simulation of VISSIM by one step.

Parameters: No parameters.

Return type: void.

The syntax for this function is as follows:

obj.runVissimOnce();

2.5.2 Public int numberOfRunsFromSecs(double t)

Finds the maximum number of times the function ”runVissimOnce” should be invoked to

run VISSIM for a specified time in the simulation.

Parameters: double t - Simulation time.

Return type: int - Returns the number of times the function ”runVissimOnce” should be

invoked.

The syntax for this function is as follows:

 int n = obj.numberOfRunsFromSecs(t);

7

2.6 Basic Safety Message (BSM)

The basic safety message (BSM) is a message that gives information about a vehicle in

the VISSIM simulation. For each vehicle, ten BSM messages are generated per second. Section

2.6.1 explains the fields of the basic safety message. Section 2.6.2 explains the functions or

methods for the BSM.

2.6.1 BSM Fields

The North, South, East, and West directions are along the positive y-axis, negative y-axis,

positive x-axis, and negative x-axis, respectively. The unit is metric or imperial, depending on

the selection in the VISSIM input file. The fields of the BSM are explained in table 2-1. The java

class for BSM is as follows:

 public class BSM

{

int vehicleID;

int messageCount;

float currentTime;

float latitude;

float longitute;

float elevation;

float speed;

float heading;

float yawRate;

float acceleration;

float lateralAccelaration=0; /* unused field*/

float verticalAcceleration=0; /* unused field*/

8

int brakeOnWheels;

int controlSystems=0; /* unused field*/ float vehicleLength;

float vehicleWidth;

}

Table 2-1 BSM Fields

Field Type Description Metric

Unit
Imperial
Unit

vehicleID Integer To identify the vehicle - -

messageCount Integer The number of BSMs sent from the vehicle - -

currentTime float The time of BSM generation in the simulation seconds seconds

latitude float Distance of the vehicle North or South of x-axis meters feet
 (Value is positive towards North and negative

towards South)

longitude float Distance of the vehicle East or West of y-axis meters feet
 (Value is positive towards East and negative towards

West)

elevation float Height of the vehicle above the surface meters feet
 (= Sum of heights of the road and the vehicle)

speed float Speed of the vehicle km / h mph

acceleration float Acceleration of the vehicle m / s2 ft / s2

heading float The angle of deviation of the vehicle from North
direction

degrees degrees

 (Value is positive in the anti-clockwise direction from
North and negative in the clockwise direction from
North)

yawRate float The rate of change of heading degrees / s degrees / s

brakeOnWheels Integer Set as 1 if brake is applied on wheels, and 0 otherwise - -

vehicleLength float The length of the vehicle meters feet

vehicleWidth float The width of the vehicle meters feet

2.6.2 Functions for BSM

Public List<BSM> getBSMForAllVehiclesForAllIntersections()

• Fetches the BSM messages of all vehicles in the network.

9

• Parameters: No parameters.

• Return type: List<BSM> - Returns the list of BSM messages of all vehicles in the

network.

Public List<BSM> getBSMforIntersection(String signalControllerName, double

distance)

• Fetches the BSM messages within a specified distance from the signal heads of an

intersection. BSM messages of all vehicles approaching the intersection, which are

within the specified distance, are fetched.

• Parameters: String signalControllerName - Name of the intersection (signal

controller), double distance - distance from signal heads of the intersection.

• Return type: List<BSM> - Returns the list of BSM messages that are fetched.

Public List<BSM> getBSMforIntersection(int intersectionNumber, double distance)

• Fetches the BSM messages within a specified distance from the signal heads of an

intersection. BSM messages of all vehicles approaching the intersection, which are

within the specified distance, are fetched.

• Parameters: int intersectionNumber - Identification number of the intersection (signal

controller), double distance - distance from signal heads of the intersection.

• Return type: List<BSM> - Returns the list of BSM messages that are fetched.

Public List<BSM> getBSMforSignalHead(String signalHeadName, double distance)

• Fetches the BSM messages within a specified distance from the signal head of an

intersection. BSM messages of all vehicles approaching the signal head, which are

within the specified distance, are fetched.

10

• Parameters: String signalHeadName - Name of the signal head, double distance -

distance from the signal head.

Public List<BSM> getBSMforSignalHead(int signalHeadNumber, double distance)

• Fetches the BSM messages within a specified distance from the signal head of an

intersection. BSM messages of all vehicles approaching the signal head, which are

within the specified distance, are fetched.

• Parameters: int signalHeadNumber - Identification number of the signal head, double

distance - distance from the signal head.

• Return type: List<BSM> - Returns the list of BSM messages that are fetched.

Public void displayBSM(BSM b)

• Displays a BSM message of a vehicle.

• Parameters: BSM b - b contains a BSM message.

• Return type: void.

Public void displayListOfBSM(List<BSM> listOfBSM)

• Displays a list of BSM messages of vehicles.

• Parameters: List< BSM > listOfBSM - listOfBSM contains a list of BSM messages.

• Return type: void.

Public void writeListOfBSMtoFile(List<BSM> listOfBSM)

• Writes a list of BSM messages to the text file specified during object creation of

covettware. The files of BSM are written, separated by a comma, as follows:

• vehicleID, messageCount, currentTime, latitude, longitude, elevation, heading,

yawrate, speed, Acceleration, brakeOn- Wheels(1=yes,0=no), vehicleLength,

vehicleWidth.

11

• Parameters: List< BSM > listOfBSM - listOfBSM contains a list of BSM messages.

• Return type : void.

12

13

CHAPTER 3 MODEL IMPLEMENTATION AND TESTING

3.1 Model Implementation Examples

3.1.1 Display a BSM Message

Display the fields of the BSM b.

Program 1

 obj.displayBSM(b);

Sample output:

vehicleID:20

messageCount:126

currentTime:9.5

latitude:2901.0

longitute:2750.0

elevation:4004.84

heading:0.0

yawRate:0.0

speed:33.489956

acceleration:0.58767843

brakeOnWheels:0

vehicleLength:13.815617

vehicleWidth:6.573727

3.1.2 Report Movement in the Network

Report the BSMs of all the vehicles in the network for 500 seconds in simulation. Also,

write the BSMs to a file.

Program 2

14

int n = obj.numberOfRunsFromSecs(500); /*calculate the number of times

runVissimOnce() function should be invoked to run the network for

500 seconds*/

for(int i=0; i<n; i++)

{

obj.runVissimOnce();

List<BSM> listOfBSM =

obj.getBSMForAllVehiclesForAllIntersections(); /*

listOfBSM contains the list of BSMs of all vehicles in

network*/

obj.displayListOfBSM(listOfBSM); /* displays the BSMs in

listOfBSM */ obj.writeListOfBSMtoFile(listOfBSM); /* writes the

BSMs in listOfBSM to file */

}

3.1.3 Report Movement of an Intersection in the Network, When Intersection Number Is Given

Assume a metric unit is used. Report the BSMs of all the vehicles within a distance of

100 meters for intersection 1, for 500 seconds in simulation. Also, write the BSMs to a file.

Program 3

int n = obj.numberOfRunsFromSecs(500); /*calculate the number of times

runVissimOnce() function should be invoked to run the network for 500

seconds*/

for(int i=0; i<n; i++)

{

obj.runVissimOnce();

15

List<BSM> listOfBSM = obj.getBSMforIntersection(1,100); /*

listOfBSM contains the list of BSMs of the vehicles of intersection 1

within 100 meters*/

obj.displayListOfBSM(listOfBSM); /* displays the BSMs in

listOfBSM */ obj.writeListOfBSMtoFile(listOfBSM); /* writes the BSMs in

listOfBSM to file */

}

3.1.4 Report Movement of an Intersection in the Network, When Intersection Name Is Given

Assume a metric unit is used. Report the BSMs of all the vehicles within a distance of

100 meters for intersection ”I1”, for 500 seconds in simulation. Also, write the BSMs to a file.

Program 4

int n = obj.numberOfRunsFromSecs(500); /*calculate the number of times

runVissimOnce() function should be invoked to run the network for

500 seconds*/

for(int i=0; i<n; i++)

{

obj.runVissimOnce();

List<BSM> listOfBSM = obj.getBSMforIntersection("I1",100); /*

listOfBSM contains the list of BSMs of the vehicles of intersection I1

within 100 meters*/

obj.displayListOfBSM(listOfBSM); /* displays the BSMs in

listOfBSM */ obj.writeListOfBSMtoFile(listOfBSM); /* writes the BSMs in

listOfBSM to file */

}

16

3.1.5 Report Movement of the Signal Head of an Intersection in the Network, When the Signal
Head Number Is Given

Assume a metric unit is used. Report the BSMs of all the vehicles within a distance of

100 meters from signal head 1, for 500 seconds in simulation. Also, write the BSMs to a file.

Program 5

int n = obj.numberOfRunsFromSecs(500); /*calculate the number of times

runVissimOnce() function should be invoked to run the network for

500 seconds*/

for(int i=0; i<n; i++)

{

obj.runVissimOnce();

List<BSM> listOfBSM = obj.getBSMforSignalHead(1,100); /*

listOfBSM contains the list of BSMs of the vehicles of signal head 1

within 100 meters*/

obj.displayListOfBSM(listOfBSM); /* displays the BSMs in

listOfBSM */ obj.writeListOfBSMtoFile(listOfBSM); /* writes the BSMs in

listOfBSM to file */

}

3.1.6 Report Movement of the Signal Head of an Intersection in the Network, When the Signal
Head Name Is Given

Assume a metric unit is used. Report the BSMs of all the vehicles within a distance of

100 meters from the signal head ”SH1” for 500 seconds in simulation. Also, write the BSMs to a

file.

Program 6

17

int n = obj.numberOfRunsFromSecs(500); /*calculate the number of times

runVissimOnce() function should be invoked to run the network for

500 seconds*/

for(int i=0; i<n; i++)

{

obj.runVissimOnce();

List<BSM> listOfBSM = obj.getBSMforSignalHead("SH1",100); /*

listOfBSM contains the list of BSMs of the vehicles of signal head

SH1 within 100 meters*/

obj.displayListOfBSM(listOfBSM); /* displays the BSMs in

listOfBSM */ obj.writeListOfBSMtoFile(listOfBSM); /* writes the BSMs in

listOfBSM to file */

}

3.2 Signal Phasing and Timing Message (SPaT)

The signal phasing and timing message (SPaT) is a message that gives information about

the phase (state) and the period for which the phase remains for the signal of an intersection. The

following sections explain the fields and functions of SPaT.

3.2.1 SPaT Fields

The java class for SPaT is :

public class SPAT

{

int intersectionId;

int messageCount;

String status;

18

ArrayList<spatSignalGroupData> spatSgData;

}

public class spatSignalGroupData

{

int signalGroupId;

String phaseState;

float minEndTime;

}

 The fields of SPaT are explained in table 3-1. The field spatSgData contains a list of

spatSignalGroupData. The class spatSignalGroupData contains the signal phasing and timing

data of a signal group. The fields of spatSignal- GroupData are explained in table 3-2. The

field ”phaseState” of spatSignalGroupData can be any valid state in VISSIM, such as RED,

GREEN, AMBER, and so on.

19

Table 3-1 SPaT Fields
Field Type Description Unit

intersectionId Integer To identify the intersection -

messageCount Integer The number of SPaTs sent from the signal group -

status String The status of the intersection -

spatSgData ArrayList Contains the list of phasing and timing data for signal
groups

-

Table 3-2 SPaT Signal Group Data fields
Field Type Description Unit

signalGroupId Integer To identify the signal group of the intersection -

phaseState String The phase of the signal group -

minEndTime float Conveys the earliest time possible at which the phase could
change

Seconds

3.3 Functions for SPaT

3.3.1 Public spatSignalGroupData createSPATSignalGroupData(int signalGroupId, String
phaseState, float minEnd- Time)

This function creates the signal phasing and timing data for a signal group of an

intersection.

Parameters: int signalGroupId - Identification number of the signal group, String

phaseState - state of signal group, float minEndTime - simulation time in seconds.

Return type: spatSignalGroupData - Returns the signal phasing and timing data for a

signal group.

3.3.2 Public SPAT createSPAT(int intersectionNumber, String intersecStatus,
List<spatSignalGroupData> sgData)

The function creates a SPaT message for a signal group of an intersection (signal

controller).

20

Parameters: int intersectionNumber - Identification number of intersection (signal

controller), String intersecStatus - Status of the intersection, List<spatSignalGroupData> sgData

- List of spatSignalGroupData.

Return type: SPAT - Returns the SPaT message created.

3.3.3 Public SPAT createSPAT(String signalControllerName, String intersecStatus,
List<spatSignalGroupData> sg- Data)

The function creates a SPaT message for a signal group of an intersection (signal

controller).

Parameters : String signalControllerName - Name of intersection (signal controller),

String intersecStatus - Status of the intersection, List<spatSignalGroupData> sgData - List of

spatSignalGroupData.

Return type : SPAT - Returns the SPaT message created.

3.3.4 Public void setSPAT(SPAT s)

The function sets a specified state for a specified time to the signal groups of the

intersection based on the information specified in the SPaT message. After the specified time, the

signal groups are reset to UNDEFINED state.

Parameters: SPAT s - s contains a SPaT message.

Return type: void.

3.3.5 Public void displaySPAT(SPAT s)

Displays a SPaT message from a signal group of an intersection.

Parameters: SPAT s - s contains a SPaT message.

Return type: void.

21

3.3.6 Public void writeSPAT(SPAT s)

Writes a SPaT message to the text file specified during object creation of covettware. The

fields of SPaT are written separated by a comma, as follows:

intersectionNumber, messageCount, intersectionStatus, List of {signalGroupNumber,

minimumEndTime, state}

Parameters: SPAT s - s contains a SPaT message.

Return type: void.

3.4 SPaT Implementation Example

3.4.1 Control Signals of an Intersection in the Network, When Intersection Number Is Given

Create a SPaT message for intersection 1 with status = FIXED_TIME_OPERATION,

with signal phasing and timing for signal groups as follows.

signalGroupId: 1, State: GREEN, minEndTime: 10 seconds in simulation signalGroupId:

2, State: AMBER, minEndTime: 10 seconds in simulation signalGroupId: 3, State:

REDAMBER, minEndTime: 10 seconds in simulation signalGroupId: 4, State: RED,

minEndTime: 10 seconds in simulation.

Set the signal groups according to the SPaT message. Display the SPaT message. Also,

write the SPaT message to a file.

Program 7

 spatSignalGroupData d1 = obj.createSPATSignalGroupData(1,

"GREEN", 10); spatSignalGroupData d2 =

obj.createSPATSignalGroupData(2,"AMBER", 10); spatSignalGroupData d3 =

obj.createSPATSignalGroupData(3, "REDAMBER", 10); spatSignalGroupData

d4 = obj.createSPATSignalGroupData(4,"RED", 10);

22

SPAT s = obj.createSPAT(1, "FIXED_TIME_OPERATION",

Arrays.asList(d1,d2,d3,d4)); /* SPAT message is created */

obj.setSPAT(s); /* set states of signal groups according to SPAT message

/ obj.displaySPAT(s); / displays SPAT message */

obj.writeSPAT(s); /* writes the SPAT message to file */

Sample Output

intersectionNumber: 1

messageCount: 1

intersection status: FIXED_TIME_OPERATION

signalGroupNumber: 1, State: GREEN, minEndTime: 10.0

signalGroupNumber: 2, State: AMBER, minEndTime: 10.0

signalGroupNumber: 3, State: REDAMBER, minEndTime: 10.0

signalGroupNumber: 4, State: RED, minEndTime: 10.0 The content written to

file is:

1,1,FIXED_TIME_OPERATION,{1,GREEN,10.0},{2,AMBER,10.0},{3,

REDAMBER,10.0},{4,RED,10.0}

3.4.2 Control Signals of an Intersection in the Network, When Intersection Name Is Given

Create a SPaT message for intersection ”I1” with status = FIXED_TIME_OPERATION,

with signal phasing and timing for signal groups as follows.

signalGroupId: 1, State: GREEN, minEndTime: 10 seconds in simulation signalGroupId:

2, State: AMBER, minEndTime: 10 seconds in simulation signalGroupId: 3, State:

REDAMBER, minEndTime: 10 seconds in simulation signalGroupId: 4, State: RED,

minEndTime: 10 seconds in simulation.

23

Set the signal groups according to the SPaT message. Display the SPaT message. Also,

write the SPaT message to a file.

Program 8

spatSignalGroupData d1 = obj.createSPATSignalGroupData(1,

"GREEN", 10); spatSignalGroupData d2 =

obj.createSPATSignalGroupData(2,"AMBER", 10); spatSignalGroupData d3 =

obj.createSPATSignalGroupData(3, "REDAMBER", 10); spatSignalGroupData

d4 = obj.createSPATSignalGroupData(4,"RED", 10);

 SPAT s = obj.createSPAT("I1", "FIXED_TIME_OPERATION",

Arrays.asList(d1,d2,d3,d4)); /* SPAT message is created */

obj.setSPAT(s); /* set states of signal groups according to SPAT message

/ obj.displaySPAT(s); / displays SPAT message */

obj.writeSPAT(s); /* writes the SPAT message to file */

3.5 Testing of a Connected Vehicle Traffic Control Algorithm

The steps to be followed to test any connected vehicle traffic control algorithm are as

follow.

1. Add jacob.jar and covettwareProject.jar to the library of your project.

2. Create an object of covettware using the function in Section 2.4.

3. Generate BSMs using the functions described in Section 2.6.

4. Use the BSMs in the connected vehicle traffic control algorithm to generate signal

status data.

5. Generate the SPaT messages using the functions described in Section 3.2.

6. Invoke the function finalStep explained in Section 2.5.

24

3.5.1 An Example of a Fixed-Time Signal Generation Algorithm

Let testInputGeneration.inpx be the VISSIM input file. Let BSM.txt and SPAT.txt be the

files to which BSM and SPaT messages are to be written. Assume VISSIM input consists of five

intersections with four signal groups 1, 2, 3, and 4. Create a fixed-time signal generator where

the signal status changes every 20 seconds in the simulation. The signal states should be

GREEN, AMBER, REDAMBER, and RED. The simulation should run for 5000 seconds in

simulation. Display the SPaT messages and also write to a file.

Program 9

public class ConnectedVehicles

{

public static void main(String[] args)

{

covettware obj = new covettware("testInputGeneration.inpx",

"BSM.txt","SPAT.txt"); /* creates an object of covettware */

int n = obj.numberOfRunsFromSecs(5000); /*calculate the number of

times runVissimOnce() function should be invoked to run the network

for 5000 seconds*/

int x = obj.numberOfRunsFromSecs(20); /*calculate the number of

times runVissimOnce() function should be invoked to run the network

for 20 seconds*/

 SPAT s;

int sgGreen = 0, sgAmber = 1, sgRedAmber = 2, sgRed = 3;

for(int i=0; i<n; i++)

{

25

obj.runVissimOnce();

if(i%x==0) /* condition is true every 20 simulation seconds */

{

for(int inters = 1; inters<=5; inters++) /* loops each intersection */

{

spatSignalGroupData d1 =

obj.createSPATSignalGroupData(sgGreen+1, "GREEN", 20);

spatSignalGroupData d2 =

obj.createSPATSignalGroupData(sgAmber+1,"AMBER", 20);

spatSignalGroupData d3 =

obj.createSPATSignalGroupData(sgRedAmber+1, "REDAMBER",

20);

spatSignalGroupData d4 =

obj.createSPATSignalGroupData(sgRed+1,"RED", 20);

s = obj.createSPAT(inters, "FIXED_TIME_OPERATION",

Arrays.asList(d1,d2,d3,d4));

/* SPAT object created*/

obj.setSPAT(s); /* set states of signal groups */

obj.displaySPAT(s); /* displays SPAT */

obj.writeSPAT(s); /* writes SPAT to file */

}

sgGreen = (sgGreen + 1)%4; sgAmber = (sgAmber + 1)%4;

sgRedAmber = (sgRedAmber + 1)%4; sgRed = (sgRed + 1)%4;

26

}

}

obj.finalStep(); /* safe closing of VISSIM and files */

}

}

27

CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS

The software was unit tested and also tested on some simple control problems accessed

entirely through the API. A manual describing the API was written. The next steps would be a

more thorough test by implementing some known control algorithms and to further verify that

the messages are standards-compliant by comparing the data produced and consumed with

standards via a process of code reading. Although the original design of the project included

integration testing with hardware, the untimely loss of the one of the principal investigators

precluded that. We recommend that at least two new “customers” for the APIs be found and

encouraged to use the code and provide feedback. We also would like to see a publication of

these APIs in a place that is visible to the field. With the coming age of connected vehicles, we

believe these APIs will be a valuable extension to micro-simulation software. As such, we

believe these results will enable connected vehicle research.

28

29

CHAPTER 5 REFERENCES

American Society for Testing and Materials (ASTM). “Standard Specification for
Telecommunications and Information Exchange Between Roadside and Vehicle Systems
- 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control
(MAC) and Physical Layer (PHY) Specifications”, ASTM E2213-03, 2010.

Heckendorn, Robert B., and Eapen, Neeta A. "Connected Vehicle Traffic control algorithm
Testing Software (CoVeTTware) user manual." National Institute for Advanced
Transportation Technology (NIATT), University of Idaho, Moscow, Idaho, U.S.A.
(2021).

IEEE. (2013), “IEEE Standard for Wireless Access in Vehicular Environments – Security
Services for Applications and Management Messages”, IEEE Standard 1609:2TM, 2013.

JACOB: a JAVA-COM Bridge project, Github, 2021, https://github.com/freemansoft/jacob-
project, accessed Mar 29, 2021

Michaels, C. D. R. S., D. Kelley, R. Sumner, S. Chriss, and D. Suz. "DSRC Implementation
Guide A guide to users of SAE J2735 message sets over DSRC." SAE International
(2010).

Society of Automotive Engineers (SAE) V2X Core Technical Committee. "Dedicated Short
Range Communications (DSRC) Message Set Dictionary: A March 2016 Update."
J2735_201603, https://saemobilus. sae. org/content/j2735_201603, accessed: October
(2020).

30

	A Connected-Vehicle Traffic Signal System Modeling Platform
	FINAL PROJECT REPORT
	CHapter 1 Introduction
	CHapter 2 model development
	2.1 Statement of Purpose
	2.2 Model Overview
	2.3 Preliminaries
	2.4 Object Creation for Using CoVeTTware
	2.5 Function for Safe Closing
	2.5.1 Public void runVissimOnce()
	2.5.2 Public int numberOfRunsFromSecs(double t)

	2.6 Basic Safety Message (BSM)
	2.6.1 BSM Fields
	2.6.2 Functions for BSM

	CHapter 3 model implementation and testing
	3.1 Model Implementation Examples
	3.1.1 Display a BSM Message
	3.1.2 Report Movement in the Network
	3.1.3 Report Movement of an Intersection in the Network, When Intersection Number Is Given
	3.1.4 Report Movement of an Intersection in the Network, When Intersection Name Is Given
	3.1.5 Report Movement of the Signal Head of an Intersection in the Network, When the Signal Head Number Is Given
	3.1.6 Report Movement of the Signal Head of an Intersection in the Network, When the Signal Head Name Is Given

	3.2 Signal Phasing and Timing Message (SPaT)
	3.2.1 SPaT Fields

	3.3 Functions for SPaT
	3.3.1 Public spatSignalGroupData createSPATSignalGroupData(int signalGroupId, String phaseState, float minEnd- Time)
	3.3.2 Public SPAT createSPAT(int intersectionNumber, String intersecStatus, List<spatSignalGroupData> sgData)
	3.3.3 Public SPAT createSPAT(String signalControllerName, String intersecStatus, List<spatSignalGroupData> sg- Data)
	3.3.4 Public void setSPAT(SPAT s)
	3.3.5 Public void displaySPAT(SPAT s)
	3.3.6 Public void writeSPAT(SPAT s)

	3.4 SPaT Implementation Example
	3.4.1 Control Signals of an Intersection in the Network, When Intersection Number Is Given
	3.4.2 Control Signals of an Intersection in the Network, When Intersection Name Is Given

	3.5 Testing of a Connected Vehicle Traffic Control Algorithm
	3.5.1 An Example of a Fixed-Time Signal Generation Algorithm

	CHapter 4 Conclusions and Recommendations
	CHapter 5 References

